

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : PQ (16EE230) Course & Branch: B.Tech - EEE

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R16

<u>UNIT –I</u> Introduction

What is power quality? Why we are concern about power quality?	[CO1]	[L1]	10M
Explain about the power quality evaluation procedure.	[CO1]	[L1]	10M
Classify the different types of power quality issues.	[CO]	[L2]	10M
a) What are the types of wave form distortion?	[CO1]	[L1]	5M
b) Write a short note on voltage imbalance	[CO1]	[L2]	5M
What are the power quality standards?	[CO2]	[L1]	10M
What are the responsibilities of end users and suppliers of electric	power s	supply?	
	[CO1]	[L1]	10M
Draw and explain the CBEMA curve	[CO1]	[L1]	10M
Draw and explain ITI curve	[CO1]	[L2]	10M
Explain the power quality terminology	[CO2]	[L1]	10M
a) Define notching	[CO1]	[L2]	2M
b) What is ment by dc offset	[CO1]	[L1]	2M
c) Define coupling	[CO1]	[L2]	2M
d) What is ment by surge	[CO1]	[L1]	2M
e) Define flicker	[CO1]	[L2]	2M
	Explain about the power quality evaluation procedure. Classify the different types of power quality issues. a) What are the types of wave form distortion? b) Write a short note on voltage imbalance What are the power quality standards? What are the responsibilities of end users and suppliers of electric Draw and explain the CBEMA curve Draw and explain ITI curve Explain the power quality terminology a) Define notching b) What is ment by dc offset c) Define coupling d) What is ment by surge	Explain about the power quality evaluation procedure. Classify the different types of power quality issues. (CO) a) What are the types of wave form distortion? (CO1) b) Write a short note on voltage imbalance (CO2) What are the power quality standards? (CO2) What are the responsibilities of end users and suppliers of electric power so and explain the CBEMA curve (CO1) Draw and explain ITI curve (CO1) Explain the power quality terminology (CO2) a) Define notching (CO1) b) What is ment by dc offset (CO1) c) Define coupling d) What is ment by surge	Classify the different types of power quality issues. a) What are the types of wave form distortion? b) Write a short note on voltage imbalance CO1] [L1] b) Write a short note on voltage imbalance [CO2] [L1] What are the power quality standards? [CO2] [L1] What are the responsibilities of end users and suppliers of electric power supply? [CO1] [L1] Draw and explain the CBEMA curve [CO1] [L2] Explain the power quality terminology [CO2] [L1] a) Define notching [CO1] [L2] b) What is ment by dc offset [CO1] [L2] c) Define coupling [CO1] [L2] d) What is ment by surge [CO1] [L1]

<u>UNIT –II</u> **Transients, short duration and long duration variations**

1.	Draw and explain the impulsive and oscillatory transients	[CO2] [L1]	10M
2.	Mention the categories and characteristics of electromagnetic phenomena in I	ower systems	?
		[CO2] [L3]	10M
3.	What are the sources of transient over voltages? Explain clearly.	[CO2] [L2]	10M
4.	a) Explain the long duration voltage variations.	[CO2] [L2]	5M
	b) Explain the short duration voltage variation.	[CO2] [L1]	5M
5.	What are the principles of over voltage protection? Explain with diagram.	[CO2] [L1]	10M
6.	Classify the principles of regulating the voltage	[CO2] [L2]	10M
7.	Explain in detail the role of capacitors for the voltage regulation.	[CO2] [L1]	10M
8.	Explain the effect of line drop compensation on the voltage profile.	[CO2] [L1]	10M
9.	What are the conventional devices available for the voltage regulation?	[CO2] [L1]	10M
10.	a) Define oscillatory transient?	[CO2] [L1]	2M
	b) What is the main cause for impulsive transient?	[CO2] [L1]	2M
	c) Define Sag?	[CO2] [L1]	2M
	d) What is the frequency range and duration in medium frequency transient?	[CO2] [L2]	2M
	e) When an interruption occurs.	[CO2] [L2]	2M

<u>UNIT –III</u> **Fundamentals of harmonics and applied harmonics**

1.	What is harmonic distortion? Discuss about the voltage versus current di	stortion.	
		[CO2] [L2]	10M
2.	a) Write the impact of voltage distortion and current distortion.	[CO1] [L3]	5M
	b) Explain the commonly used indices for measuring of harmonic content	t in the	
	waveform.	[CO1] [L1]	5M
3.	Explain the power system quantities under non sinusoidal condition.	[CO1] [L1]	10M
4.	What are the harmonics sources from commercial loads?	[CO2] [L2]	10M
5.	What are the harmonics sources from industrial loads?	[CO2] [L2]	10M
6.	Explain the brief description about the harmonic distortion evaluation.	[CO2] [L1]	10M
7.	Explain the principles of controlling harmonics.	[CO2] [L1]	10M
8.	Explain the various devices for the controlling of harmonics distortion.	[CO2] [L1]	10M
9.	What are effects of harmonics? Explain harmonic distortion evaluation p	rocedure?	
		[CO2] [L2]	10M
10.	a) What is ment by harmonics?	[CO2] [L2]	2 M
	b) What is percentage of fluorescent lighting in commercial loads?	[CO2] [L2]	2M
	c) Define THD	[CO2] [L2]	2M
	d) What is the purpose of line reactor?	[CO2] [L2]	2M
	e) What is ment by TDD?	[CO2] [L2]	2M

<u>UNIT -IV</u> <u>Power quality monitoring</u>

1.	a) Write a short note on power quality monitoring standards.	[CO3] [L2]	5M
	b) Write about any one power quality measurement equipment.	[CO3] [L2]	5M
2.	Explain the various power quality monitoring considerations.	[CO3] [L1]	10M
3.	Explain about various power quality measuring equipment.	[CO3] [L1]	10M
4.	Explain the categories of instruments to consider for harmonic analysis.	[CO3] [L1]	10M
5.	Explain about smart power quality monitors.	[CO3] [L1]	10M
6.	Explain about the flicker meters.	[CO3] [L2]	10M
7.	Explain the applications for system maintenance, operation and reliability.	[CO3] [L1]	10M
8.	Explain about the permanent power quality monitoring equipment.	[CO3] [L1]	10M
9.	Explain about the power quality bench marking.	[CO3] [L1]	10M
10.	a) What is ment by true RMS?	[CO3] [L3]	2M
	b) Define multimeter	[CO3] [L2]	2M
	c) Why the flicker meter is need?	[CO3] [L2]	2M
	d) What is revenue meters?	[CO3] [L3]	2M
	e) What is purpose of digital fault recorders?	[CO3] [L2]	2M

<u>UNIT -V</u>

Power quality enhancement using custom power devices

1.	What is the need for current limiter? Discuss the operation of a Solid state	current	limiter	•
		[CO4]		10M
2.	What are the advantages of solid state current limiters compared to conver			
	limiters? Discuss.	[CO4]		10M
3.	What are the advantages of static var compensators? Discuss the operation			
	Compensators?	[CO4]	[L2]	10 M
4.	Draw and explain the schematic diagram of a right shunt UPQC?	[CO4]	[L3]	10M
5.	How UPQC protects the load from harmonic voltages? Discuss.	[CO4]	[L2]	10M
6.	Explain the solid transfer switch transfer with the transfer operation?	[CO4]	[L1]	10M
7.	Explain the Solid State Breaker principle of operation?	[CO4]	[L1]	10M
8	.Draw and explain the schematic diagram Dynamic Voltage Restorer?	[CO4]	[L3]	10M
9.	Explain the principle of DVR operation used for sag mitigation?	[CO4]	[L1]	10M
10.	a)Give the list of two groups custom power devices?	[CO4]	[L1]	2M
	b)Give the complete classification of custom power devices?	[CO4]	[L1]	2M
	c)What is Static Current Limiter?	[CO4]	[L2]	2M
	d)What is Static Transfer Switch?	[CO4]	[L2]	2M
	e)What is Solid State Breaker?	[CO4]	[L2]	2M

Prepared by: **S.MUNISEKHAR**

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : PQ (16EE230) Course & Branch: B.Tech - EEE

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R16

<u>UNIT – I</u>

Introduction

1. A Manufacturer of load equipment may define pow that enables the equipment to work properly.	1 7	[]
A) Power supply	B) Load		
C) Miss operation	D) Frequency		
2. Any power problem manifested in voltage, curren	t, or frequency deviations that result		
customer equipment.		[]
A) Failure or misoperation	B) voltage sag		
C) Voltage swells	D) frequency		
3. The current resulting from a short circuit causes the	e Completely.	[]
A) Voltage to sag	B) voltage improvement		
C) Capacitive load	D) inductive load		
4. Distorted currents fromloads als	o distort the voltage as they pass thro	ough the	•
system impedance.		[]
A) Capacitive	B) inductive		
C) Harmonic producing	D) voltage sag		
5. Sag is used as a synonym to the IEC term		[]
A) short circuit	B) dip		
C) Swell	D) voltage		
6. The term swell is introduced as an inverse to		[]
A) short circuit	B) Harmonics		
C) ANSI	D) dip		
7. A utility engineer may think of a surge as the transi	ent resulting from a lightning stroke	for whi	ch a -
is used for protection.]]
A) surge arrester	B) Lightning phenomenon		
PRINCIPLES OF POWER QUALITY		<u> </u>	Page 6

8 Anis		D) isolator			
0.7111	a sudden non – power	r frequency change in	the steady state co	ondition	of
voltage, current or both that i	is unidirectional in pol	larity .		[]
A) Short circuit		B) surge			
C) Impulse transient		D)open circu	ıit		
9. A transient with a primary	frequency component	less than 5 kHz, and	a duration from 0.	3 to 50n	ns, is
considered a				[]
A) High frequency tra	ngiant	R) low from	ency transient		
C) Medium frequency		D) pulse wid	•		
10. Oscillatory transients with		, 1		the	
distribution system.	ir principai irequencies	o i cos tituli	ruiso oc round on	[]
distribution system.				L	J
A) 50Hz	B) 100Hz	C) 150Hz	D) 300Hz		
11. Long-duration variations	encompass root-mean	square (rms) deviation	ons at power freque	encies fo	or
longer than				[]
A) 1min	B) 2min	C) 3min	D) 5min		
12. Anis an increas	, , , , , , , , , , , , , , , , , , ,	,	· · · · · · · · · · · · · · · · · · ·	frequen	cy
for a duration longer than 1 m			1	[]
_					
A) Under voltage		B) Over voltag	e		
C) Flicker		D) None	_	0	
13. Anis a decr		tage to less than 90 p	ercent at the power	r freque	ncy
for a duration longer than 1 m	nın			l	J
A) Under voltage					
		B) Over voltag	e		
C) Flicker		B) Over voltag D) None	e		
C) Flicker 14. An occu	urs when the supply v	D) None		han 0.1	pu
, , , , , , , , , , , , , , , , , , ,		D) None		han 0.1 [pu]
14. An occi		D) None		han 0.1 [pu]
14. An occur for a period of time not excee	eding 1 min. B)sag	D) None oltage or load current C)Swell	decreases to less to	[pu]
14. An occur for a period of time not exceed A) Interruption	B)sag se to between 0.1 and	D) None oltage or load current C)Swell	decreases to less to	[pu]
14. An occur for a period of time not excee A) Interruption 15. A is a decrease frequency for durations from	B)sag se to between 0.1 and 0.5 cycle to 1 min	D) None oltage or load current C)Swell 0.9 pu in rms voltage	D)None or current at the p	[ower]
14. An occur for a period of time not exceed A) Interruption 15. A is a decrease frequency for durations from A) Flicker	B)sag se to between 0.1 and 0.5 cycle to 1 min B) Harmonics	D) None oltage or load current C)Swell 0.9 pu in rms voltage C) Swell	D)None or current at the po	[ower []
14. An occur for a period of time not excee A) Interruption 15. A is a decrease frequency for durations from A) Flicker 16. A is defined	B)sag se to between 0.1 and 0.5 cycle to 1 min B) Harmonics as an increase to betw	D) None oltage or load current C)Swell 0.9 pu in rms voltage C) Swell veen 1.1 and 1.8 pu in	D)None or current at the po	ower []] the
14. An occur for a period of time not exceed A) Interruption 15. A is a decrease frequency for durations from A) Flicker	B)sag se to between 0.1 and 0.5 cycle to 1 min B) Harmonics as an increase to betw	D) None oltage or load current C)Swell 0.9 pu in rms voltage C) Swell veen 1.1 and 1.8 pu in	D)None or current at the po	[ower []
14. An occur for a period of time not excee A) Interruption 15. A is a decrease frequency for durations from A) Flicker 16. A is defined	B)sag se to between 0.1 and 0.5 cycle to 1 min B) Harmonics as an increase to betw	D) None oltage or load current C)Swell 0.9 pu in rms voltage C) Swell veen 1.1 and 1.8 pu in min.	D)None or current at the po	ower []] the
14. An occur for a period of time not exceed A) Interruption 15. A is a decrease frequency for durations from A) Flicker 16. A is defined power frequency for duration	B)sag se to between 0.1 and 0.5 cycle to 1 min B) Harmonics as an increase to betw s from 0.5 cycle to 1 r B) Harmonics	D) None oltage or load current C)Swell 0.9 pu in rms voltage C) Swell veen 1.1 and 1.8 pu in min. C) Swell	D)None or current at the position of the D) Sag rms voltage or current D) Sag	ower [rrent at t] the
14. An occur for a period of time not exceed A) Interruption 15. A is a decrease frequency for durations from A) Flicker 16. A is defined power frequency for duration A) Flicker	B)sag se to between 0.1 and 0.5 cycle to 1 min B) Harmonics as an increase to betw s from 0.5 cycle to 1 r B) Harmonics d as the maximum dev	D) None oltage or load current C)Swell 0.9 pu in rms voltage C) Swell veen 1.1 and 1.8 pu in min. C) Swell viation from the avera	D)None or current at the portion D) Sag rms voltage or current D) Sag ge of the three phase	ower [rrent at t] the]
14. An occur for a period of time not exceed A) Interruption 15. A is a decrease frequency for durations from A) Flicker 16. A is defined power frequency for duration A) Flicker 17defined	B)sag se to between 0.1 and 0.5 cycle to 1 min B) Harmonics as an increase to betw s from 0.5 cycle to 1 r B) Harmonics d as the maximum deverage of the three phase	D) None oltage or load current C)Swell 0.9 pu in rms voltage C) Swell veen 1.1 and 1.8 pu in min. C) Swell viation from the avera	D)None or current at the portion D) Sag rms voltage or current D) Sag ge of the three phase	ower [rrent at t] the]
14. An occur for a period of time not exceed A) Interruption 15. A is a decrease frequency for durations from A) Flicker 16. A is defined power frequency for duration A) Flicker 17defined or currents, divided by the average the three phase voltages or currents.	B)sag se to between 0.1 and 0.5 cycle to 1 min B) Harmonics as an increase to betw s from 0.5 cycle to 1 r B) Harmonics d as the maximum deverage of the three phase arrents.	D) None oltage or load current C)Swell 0.9 pu in rms voltage C) Swell veen 1.1 and 1.8 pu in min. C) Swell viation from the avera	D)None or current at the position of the D) Sag rms voltage or current at three phases, divided by the arms.	ower [rrent at t] lthe lges of
14. An occur for a period of time not exceed A) Interruption 15. A is a decrease frequency for durations from A) Flicker 16. A is defined power frequency for duration A) Flicker 17defined or currents, divided by the average of the content of th	B)sag se to between 0.1 and 0.5 cycle to 1 min B) Harmonics as an increase to betw s from 0.5 cycle to 1 r B) Harmonics d as the maximum deverage of the three phase arrents.	D) None oltage or load current C)Swell 0.9 pu in rms voltage C) Swell veen 1.1 and 1.8 pu in min. C) Swell viation from the avera	D)None or current at the position of the D) Sag rms voltage or current at three phases, divided by the arms.	ower [rrent at t] lthe lges of

18is defines as a steady state deviati	on from an ideal sine wave of pow	ver	
frequency principally characterized by the spectral content	nt of the deviation.	[]
A) Waveform distortion C) Noise	B) Voltage unbalance D) Notchi		
19. Voltages or currents having frequency components the which the supply system is designed to operate are called			
which the supply system is designed to operate are caned]
A) Harmonics B) Flickers C) Inter harmonics 20. Voltage sag is caused by	,	[]
A) System faults	B) Load variations		
C) Starting of large motors 21. Unwanted electric signal with broad band is	D) A & B]]
A) Notching B) DC offset C) Noise	D) Harmonics		
22. The presence of DC in AC system is	D) Harmonics	[]
A) Notching B) DC offset C) Noise 23. Voltage fluctuations is sometimes called as	D) Harmonics	[1
-		L	1
, ,	Noise	г	,
24. The duration of voltage sag is A) 0.25cycle -0.5min	B) 0.5cycle-1min		J
	•		
C) 1cycle-1min	D) None	г	,
25. The duration of voltage swell is			J
A) 0.25cycle -0.5min	B) 0.5cycle-1min		
C) 1cycle-1min	D) None	_	-
26. Waveform distortion is A) Frequency variation	B) Steady state deviation	L	j
A) Prequency variation	b) Steady state deviation		
C) A&B	D) None		
27. Endures are better informed about		[]
A) Sags B) Transients C)Ao	&B D)None		
28. The ultimate reason that we are concerned about pow	er quality is	[]
A) Technical value C) A&B	B) Economic value D) None		
29. Voltage fluctuations is also called as		[]
A) Flicker B) Surge C) E	raquancy variation D) Nana		
A) Flicker B) Surge C) F. 30. CBEMA curve is replaced by	requency variation D) None	[1
A) ITI B) IIT C) C	MT D) None	L	ı

	QUESTION BANK	<mark>2</mark>	020
31. Interruptions occur due to		[]
A) Power system faults C)Control mal function	B)Equipment failure D)All		
32. Loads can exhibit continues rapid variations in load cu	rrent magnitude results of	[]
A) Flicker B)Sag C)Swell 33. The portion of CBEMA curve is adapted from	D)None	[]
A) IEEE B)IEC C)ICC	D)IOC		
34. Ratio between the peak value and RMS value of a period	,	[]
A) Coupling B)Crest factor C)Distortion	D)Deviation	-	-
35. large current that load draws when initially turned on is A)Impulse B)Crest factor C)Coupling	s D) inrush	[]
36. Power quality isquality A)Voltage quality	B)Current quality	[]
C)Frequency quality	D)All		
37. ITI curve is applicable for		[]
A)120Volts B)160Volts C)180 Volts	D)100Volts	L	J
38. A loss of equipment operation due to noise ,sag or inte	rruption	[1
A) Dropout B)Dip C)Distortion	D)Fault	_	_
39. Fault generally refers to aon the power system A)Open circuit	B)Shot circuit	[]
C)A&B	D)Flicker		
40. The systematic variations of the voltage envelop is called A) Fluctuations	ed B)Deviations	[]
C)Distortions	D)Frequency variations		

<u>UNIT –II</u> <u>Transients, short duration and long duration variations</u>

1	are used to pro	ovide reactive p	ower to correct	the power factor,	which reduce	es losses	s and
suppo	orts the voltage on the s	ystem.				[]
	A).circuit breakers	B).fuses	C) capacitors	D) surge arreste	ers		
2. Ne	ewer high – energy MO	V arresters for l	low voltage app	plications can with	nstand	[]
	A) 2 to 4 kJ	B) 400kJ	C) 500kJ	D) 600kJ			
3. Th	e initial transient frequ	ŕ	.0 kHz and app	· · · · · · · · · · · · · · · · · · ·	ount of		- on
the fr	ont of the waveform.					[]
	A) hash	B)flash	C)dash	D)crash			
4. Th	e main function of surg	ge arresters and	TVSS is to lim	it the	that ca	n appea	ır
betwe	een two points in the ci	rcuit.				[]
	A) Power	B) voltage	C) current	D) frequency			
5	are 1	normally open d	levices that cor	nduct current durir	ng over volt	age	
trans		ormany open c		idaet carrent darn	ig over von	[]
	A) han han D) ye	vy hom C)on	mayy han D)a	amary ham			
6 Δ	A) bar-bar B) vo an isolation transformer	ov-bar C)ci	· · · · · · · · · · · · · · · · · · ·			[]
U. A	in isolation transformer	used to attenue	iic			L	J
	A) High frequency		*	nsients stability			
7	C) Normal current			gh frequency noise			4:
/	combines t	wo surge suppr	essors and a 10	w pass filter to pro	ove maximum	r protect	uon.]
						L	1
	A) Normal protector		B).hy	brid protector			
	C) Liquid protector		D) lii	ne projector			
8	c	an reduce the c	apacitor switch	ing transients.		[]
	A) Linear resistors		B) Ca	arbon resistors			
	C) Pre-insertion resis	stors	D) Tı	ransistors			
9. Po	pular strategy for reduc	ing transients o	on capacitor sw	itching is to use a			
						[]
	A) Closing breaker		B) cir	cuit breaker			
	C) Synchronous clo	•	ŕ	e sectionalizes			
	The transformer would h			=	t of resistive e	equivale	-
load	to limit Ferro resonance	e over voltages	tope	rcent		l]
	A) 10	B) 20	C) 12	5	D) 225		

11. Utilities generally try to mainta the	in the service vo	oltage supplied to	o an end user within	ı []
A) +/_ 2 percent of nomina C) +/_ 4 percent of nominal		B) +/_ 3 Perce D) +/_ 5 Perce			
12. The approach to flicker causing	g loads is to app	ly devices that a	re commonly called	[]
A) Static var compensators C) Series capacitors	ad oubstation I	B) dynamic co. D) none	-	Г	1
13. Utility line voltage regulators at	nd substation L	ics are relativel	.y	[]
A) medium B)h 14. Electronic tap switching regulat	ors can also be	C)A&B used to regulate	D)slow	[]
A) current B)v 15. Magnetic synthesizers although	oltage intended for sh	C)power ort duration volt	D)energy	[]
A) swell B)s	sags	C)A&B	D)freque	ncv	
16. Motor generator sets are also us	· ·	C)riceD	D)neque.	[]
, ,	oltage swell	C)voltage reg	ulation D)compe	ensation	,
17.The line drop compensator setting A)R&V B)	igs are called V&I	C)P&V	D)R&X	L]
18.Capacitors may be used for vol	tage regulation	on the power sys	stem in	[]
A)Shunt configuration	B)se	ries configuration	on		
C)Shunt or series configura		,B,&C			
19.Series capacitors cannot tolerat A)fault current B)fault v		t impedance	D)A&B	[]
20.Capacitor switching is source of				[]
A)transient B)noise	C)dist	ortion	D)flicker	r	1
21.Lightning is main source of				[J
A)oscillatory transient B)harmonics		B)impulsive tra D)all	ansient		
22.clamping are used in circu	iits			[]
A)A B)DC	C)A,I	3	D)none		
23.Impulsive transients are presents	s in only	-directions		[]
A)positive or negative	B)positive	C)negative	D)all		

	QUE	STION BANK	2020
24.Ballast islimiting device in lightni	ing applications	[]
A)voltage B)impedano	ce C)current D))none	
25.Capacitor switching is one of the source of A)transient over voltage B)	sag C)interruptions	D)none]
26.High energy transients are first handled by]]
A)low-pass filter B) gap-typ	pe protector C)both	D)none	
27.power conditioners are similar to]]
A)Low-pass filters C)TVSS	B)isolation T/F D)none		
28. The inductor in the low pass filter bloks the]]
A)High freq transients	B)low freq transi	ents	
C)both	D)none		
29. Transients is also called as]]
A) Interruption B) Surge	C) Voltage-variation	D) None	
30. Short duration voltage variation is caused by]]
A)Loose connection B) Switching	C) Load variation	D) None	
31. The Voltage drops too low under _ load]]
A) Heavy B) Light	C) Both	D) None	
32. Which is example of isolation device]]
a) Ups s/m B) Ferro resonant t	/f C) Motor Generator set	D) All	
33. Which one is more efficient in Voltage regul	ation device]]
A) FerroresonantC) Magnetic synthesizer	B) Electronic tap D) none	switching solu	utions
34. The drawback of motor – generator set is]]
A) Response time is large	B) Losses are hi	gh	
C) both	D) None		
35. In series capacitors, Voltage rise is zero at		[]
A) No load B) full load	C) both	D) None	
PRINCIPLES OF POWER QUALITY			Page 12

			QUESTION BAN	К	2020	
36. In shunt capacitor,	36. In shunt capacitor, % voltage rise is independent of					
A) load	B) supply	C) both	D) None			
37. In series capacitor,	the S/M losses are	than shut capacitor		[]	
A) more	B) less	C) equal	D) none			
38. in cyclic Flicker is a	a result of Voltage	e fluctuation		[]	
A) Periodic	B) Non periodic	c C) Occasional	D) Non oo	ccasi	ional	
39. Zig – Zag transform	ners act like a filter to	the zero sequence curren	nt by offering	[]	
A) high impedar	ce path to neutral	B) Low impedance path	to neutral			
C) Any of the al	pove I	D) None				
40. Notch filters can pro	vide to harmonic	suppression		[]	
A) power factor		B) voltage				
C) Reactive pow	er	D) Active power				

<u>UNIT –III</u> Fundamentals of harmonics and applied harmonics

1	is the	average rate of deliv	very of energy.			[]
	A)active power	-					
	is a rat	tio of useful power to	o perform real wo	ork to the	e power supp		
utility.	A)active power	B)reactive power	C)power fact	tor	D)apparent	=]
3	become ar	important issue for	grounded wye sy	stems w	ith current f	lowing o	n the
neutral		1				[]
	A)fourth harmonics		B) Triple har	rmonics			
4	C)fifth harmonics	ogume of the offective	D) seventh har		ommononts o	f a distant	#ad
	is a me	asure of the effective	e value of the nam	monic co	omponents o	-	-
wavefo	orm.					L	J
	A)fifth harmonic		B)triplen harm	nonic			
	C)total harmonic dist	ortion	D) seventh ha		,		
5. A di	stinctive characteristic		ver supplies is a v	ery high	ıh	armonic	content
	current.	-				[]
	A) fifth	B)seventh	C)third		D) ninth		
6	are ind	uced currents in a tra	ansformer caused	by the r	nagnetic flux	xes.	
						[]
	A)hysteresis losses		B)eddy curren	nt losses			
	C) friction losses		D)stay losses				
7. Harı	monic voltage distortio	n at the motor termin	nals is translated	into			
within	the mot					[]
	A)eddy current losses		B)Harmonic fl	luxes			
	C) Power		D) stay losses	S			
8. The	typical range of freque	encies for induction	furnaces is			[]
9	A) 150 to 1200 kHz is the only step req		C)10Hz	D) 300	00Hz	[1
<i>)</i> .	is the only step req	uned for de diffes.				L	J
	A) RectificationC) cyclo converters		B). inverter D) cyclo inv	erters			
10. A f	frequency that is an inte	eger multiple of the	· •		called	[]
	A) harmonic frequence	y B) switching	C) transient	D)voltage		

			QUESTION BAN	IK 20	20
11. Crest factor for sinusoi	dal wave is			[]
A) 1.123	B) 1.232	C) 1.343	D) 1.414		
12. The Voltage distortion	on transmission system	n is less than%		[]
A) 5%	B)10%	C) 1%	D) 15%		
13. Voltage distortion dep	ends on the current&			[]
A)Voltage	B)current	C) Frequency	D) Impedano	ce	
14. Most common type of p	passive filter is			[]
A) Single tuned fil	ter B) double tuned filte	er C) high pass filte	er D) none		
15. The current drawn by	the ferroresonant transfe	ormer increases fro	om	[]
A) 0.5-2 A	B) 0.3-1 A	C) 0.2 -2 A	D) 0.4 -2 A		
16. The devices for contro	lling harmonic distortio	ons are		[]
A) Line reactor	B) capacitor banks	C) zigzag t/f's	D) All the ab	ove	
17 is practical	y effective method for	the PWM type driv	/es	[]
A) zigzag t/f's	B) Line react	tor C) filter	D) no	ne	
18. Some impulse load lik	e rock crushers and tire	testers use		[]
A) Shunt capacitors	B) shunt read	ctors C) series	reactors D) ser	ries cap	acitors
19. Which of the following	device is a static var co	ompensator		[]
A) TCR	B) TSC	C) SSSC	D) A	and B	
20. In electronic tap-switch	hing regulators	are used		[]
A) SCR's	B) triacs	C) A or	B D) No	one	
21. Static Var compensato	rs can regulate the volta	age by		[]
A) Supply reactive	power B) consumes	reactive power C)	a or b D) no	ne	
22. Due to the series capac	citors the voltage rise at	no-load is		[]
A) Minimum	B) zero	C) maxir	num D) no	ne	
23. The percentage voltage	e rise at the capacitor is	maximum at		[]
A) full-load	B) light-load	c) no-loa	ad D) all		
PRINCIPLES OF POWER QU	ALITY				Page 15

				QUESTIC	ON BANK	2020	
24 Cannot provide reac	etive power to the	feeder	load			[]
A) Shunt capacitors	B) shunt react	ors	C) serie	s capacitors	D) None		
25. A typical 3% input choke can	be reducing the h	narmon	ic distorti	on		[]
A) 80-40%	B) 40-20%		C) 10-5	%	D) 50-40	%	
26. The devices for controlling ha	armonic distortion	is are				[]
A) Line reactor	B) capacitor b	anks	C) zigza	ag t/f's	D) All the	e above	
27. Harmonic control options con	sist of controlling	the ha	rmonic in	jection from		[]
A) Linear loads C)Harmonic filters 28. The total demand distortion is	expressed in term	ns of th	D) any	inear loads of the above		[]
A) Average demand C) demand factor 29.The short circuit ratio used to o	determine the limi	ts on		imum demano zation factor	d]]
A) Harmonic study 30. The source of harmonic current	B) P C C	C) T	DD	D) harmoni	c currents	[]
A) Low 31. Transformer connections can	B) medium be employed to re	C) g		D) transien	ts]]
A) 3 phase systems		B)1	phase sys	tems			
C)2 phase systems 32. Harmonic problems on distrib	oution feeders often		y of the a	lbove		[]
A) Light load 33. Which devices available to co	B)half load entrol harmonic dis		ull load	D)one for	urth load	[]
A)a capacitor bank 34. The product of RMS voltage a A) Active power 35. Power system freq is directly	B) Reactive po	ed		•	e above D) None	[]
A) Power factor	B) Speed	C) Both		D) None		
36 Power system freq is directly r A) Power factor	related to B) Speed	C) Both		D) None	[]
37. Notch filters can provide	to harmonic suppr	ression				[]
A) power factor	B) voltage	C) Reactiv	e power			
38. Capacitor voltage filers have	on its output					[]
PRINCIPLES OF POWER QUALITY						Pag	ge 16

A) Hig	h pass filter	I	B) band pass filter			
C) low	pass filter	I	D) band reject filter			
39. C- Filters	are alternative to				[]
A) Lov	w pass broad band filters	B) high	pass filters			
C) Lov	v pass filters	D) Pass	filters			
40. The ration	b/w the RMS value and the	peak value	e of a pure sinusoidal wave	form is	[]
A) 0.70	D7 B) 1.1	11	C) 1.5	D) 1.44		

<u>UNIT -IV</u> <u>Power quality monitoring</u>

1. Power quality monitoring programs are often d	lriven by the demand fo	or improving th	ne syster [m wide]
A)power quality performance C) current quality performance 2. The methods for characterizing yhe quality of	B) voltage quality pe D)None ac power are important		[]
A)power disturbanceC) monitoring requirements	B) voltage d D) rms variations	isturbance		
3. Infracted meters can be very valuable in detec	ting loose connection a	nd]]
A)insulators	B)semiconductors			
C)overheating conductors 4. Electrostatic discharge(E S D)can be an import	D) A&B tant cause of power qua	ility problems i	n some	type of
A)Electrical equipment C) Electrical &Electronic equipment 5. The rms value of a signal is a measure of the heacross a	B)Electronic equiparts D)none eating that will result if		mpresse [ed]
A)Inductive load B)capacitive load 6.Instruments in the disturbance analyser categor	C) resistive load y have very limited	D)none	[]
A)Harmonic study C) Harmonic analysis capabilities 7.A simple portable meter for harmonic analysis	B) Harmonic inject D)any of the above is		[]
A)practical B)ideal 8.Historically flicker has been measured using rm	C)A&B as meters, load duty cyc	D)medium ele, and a	[]
A)Flicker curve B) T H D	C)Load duty cycle	D)Measuring	flicke	ſ
9.Monitoring of power quality on power systems	often requires transduc	ers to obtain ac	cceptabl	e]
A)V & I signal levels C)E & I signal levels 10.Frequency response is particularly important for	B)V & P signal leve D)A&B or transient and harmon]]
A)Distortion monitoring B)Signal levels	C) FTP	D)UCAMMS	S	

11.T	he]	project defined sever	al perfor	mance indices	for evaluating	g the electr	ric
servi	ce qual	ity.]]
12			B) RVM	the place	C).RGM		O)RRM	
12.			m and characterization					
	Systen	-			-		[]
		ollect RVM data		,	Collect RBX da			
13	,		-could be based on p					
			tandard established	-		Ι	[]
		ect EPRI RBM		B) s	elect the bench	nmark		
	C)Se	lect RVM		D)	RRM			
14.	IEEE S1	tandard 1159-19	995 defines a sustain	ed interr	uption as a red	uction in the		
rn	ns volta	ge to less than -	percent of nomi	inal volta	age for longer t	han 1 min.]]
	A)	20	B) 30	C)	40	D) 10		
15. <i>A</i>	A	is tl	he maximum sum of	sag scor	e values allow	able for a gro	up of locat	ions
befo	re comp	ensation.					[]
	A) sa	g score targets) interruptions			
16		g wind targets	. 1		none of the a		1, 6	41
	A est quali		verage per unit volt	age lost	by each of the	three phase v	oltages for [the]
	′ .		•		ag wind			
			n the mean value of			age THD mea	surements	,
reco	rded for	each circuit seg	gment rather than the	e CP95 v	alue.		L]
10.7		SATDD	B)SATHD		SATSS .	D) voltag	=	•,
18. 1	ne		are designed	to asses	s the service qu	uality for a sp	ecified circ	cuit area
	A)		d:	D,	\ ov: 1	40 co in dioco	Ĺ	-
	,	ms variation ind Average voltage)maximum vol [.]) voltage sag	tage muices		
19		-	as metrics for quant			e.	[]
	A) E	PRI RBM	B) RVM	C)R	GM	D)ROG	ł	
		-	CP95 value of a weig	ghted dis	tribution of the	individual ci		-
CP9	5 values	s of voltage					[]
	A) S	SDD	B)TDD	C) 7	ГНО	D)TDD)s	

			QUESTION B	ANK	2020
21.Digital monitoring instrumen	ts incorporate the	use of		[]
A)A to D B)D to A 22.The frequency response of a	C)Bostandard metering		D)None pends on the	_ []
A)Voltage B)Current 23.Some substations use capacit	, · •	•	D) Type burden	_ []
A)Voltage regulation C)Frequency		B)Vo D)Al	oltage transdusers 1		
24.Standard metering class C To	s are generally ad	equate for frequ	encies up to	[]
A)5KHz B)3KHz 25.Usually existing substation C	C)2F Ts and V T s car		D)10KHz]]
A)PQ maintenance C)PQ Consideration 26.For monitoring primary sites	involve monitori	B)PQ Monito D)None ng at the sending	_	[1
A)distribution transformore C)Fault recorders 27.There are two streams of pow	er	B)Multimete D)All	ers]
A)Offline B)Line at 28. The new standard format for	•		D)None	[]
A)PQ DIF B)PQ DE 29.Transient analysis which incl	· · · · · · · · · · · · · · · · · · ·	QDAF alysis of maxim	=)= Q	nt dura	tion and
				[]
A)Transiant B)Transion 30. RMS variations is structure		C)Power	D)Current	[]
A) one B) Two		C) Th	rree D)	Five	
31% of RMS variator are n	o rectangular			[]
A) 20 B) 10		C) 30	D) 60		
32. RMS variations is structure	into Levels]]
A) one B) Two		C) Th	rree D)	Five	
33. SAR $Fl_x =$				[]
a) $\Sigma N_i/N_t$ B)	$\Sigma N_i - 1/N_t$	c) $\Sigma N_i + 1/N_t$	D) $\Sigma N_i + 1/2$	N_{t-1}	
34. SARFI is us to define				[]
A) Threshold as a curve			B) threshold as a	valve	

C) Both A an	d B	D) No	ne		
35. IEEE – 519 is the	e standard for			[]
A) Voltage h	armonies B) Current harmonies C) spil	kes D) sags		
36. Voltage magnitud	de and transient m	agnitude can be measures b	ру	[]
A) Spectrum	Analyze	B) Har	rmonic Analyze		
C) Disturbanc	e Analyze		D) RMS meter		
37. Determine target	performance level	s are targets that are approp	oriate ane econom	ically and]
A)Feasible	B)Unfeasible	C)Considerable D)No	ne		
		roximatelypercer oring system fall below		e sags meas [sured by
A)20,0.75PU	B)10,0.7PU	C)25,0.6PU	D)15,0.9PU		
39. An insurance scho	eme is considered	if the expected cost o	of claims equals		
the premiums paid.				[]
the premiums paid.				L	J
A) fair	B) unfair	C)feasible	D)none	ι	J
A) fair	s agreements, ma	C)feasible intenance efforts to	,		

<u>UNIT -V</u> Power quality enhancement using custom power devices

1.The concept of custom	power was intro	oduced			[]
A) N. G. Hingo	rani B) I	David.N	C) Nelson.F	D) 1	None	
2. A unified power quali	ty conditioner (U	JPQC) is a con	nbination of		[]
A) series	B) shunt	C) series and	d shunt	D) None		
3. The network reconfigure A) series switch:			ed eries and shunt sv	vitchgear	[D)None]
4. The energy exchange through				•	ce []
A) Inductor	B)Resistor	C) dc ca	pacitor	D)None		
5. The compensating cus	tom power device	ces are used fo	r		[]
A) active filtering	ng B) load	balancing	C) power facto	or improvemen	nt D)All	
6. Which of the following	g are compensati	ng custom pov	ver devices		[]
A) UPQC	B) Solid State	e Breaker	C) Static Cur	rent Limiter	D)None	
7. Which of the following	g are Network re	configuring ty	pe custom power	devices	[]
A) UPQC	B) Solid State	Breaker	C) DVR D)No	one		
8. Network reconfiguring inserting series induct	ance]
A) UPQC	B) Solid State	Breaker	C) DVR D) S	tatic Current	Limiter	
9. Which of the following	g is a high-speed	d switching dev	vice		[]
A) GTO	B) MOSFET	C)BJT	D) Static Current	Limiter		
10. Which of the following	ng is a high-spee	d switching po	wer electronic co	ontrolling dev	ice []
A) UPQC	B) Solid State	Breaker	C) DVR D) S	tatic Current	Limiter	
11. Dynamic Voltage Re	estorer is also cal	led as			[]
A) series-shunt of	compensator B)	shunt compen	sator C) static so	eries compens	sator D)N	one
12. Which of the following	ng devices is call	ed as series vo	ltage booster		[]
A) UPQC	B) Solid State	Transfer Switc	h C) DV	R D) None	
13. The number of GTO A) rated peak po	-		urrent Limiter age C) rated pea	k current D	[O) None]

14. When a deep voltage sag or interruption is detected in this feeder, the load is quickly		
transferred to the alternate feeder. This switching action is called	[]
A) make-before-break B) make-after-break C) make-small-break D) No	ne	
15. The primary objective of a transfer switch is to protect a sensitive load from	[]
A) voltage sag/swell B) voltage interruption C) power interruption D) N	one	
16. Which of the following are not compensating custom power devices	[]
A) UPQC B) Solid State Breaker C) DVR D)None		
17. Which of the following are not Network reconfiguring type custom power devices	[]
A) UPQC B) Solid State Breaker C) Static Current Limiter D)No	one	
18. A solid state breaker can offer the following advantages	[]
A) limited fault current B) reduced switching surges C) power quality D).	None	
19. The most efficient and modern custom power device used in power distribution		
Networks	[]
A) UPQC B) Solid State Breaker C) DVR D)None		
20. DVR is a series connected custom power device, designed to inject a dynamically	[]
controlled		
A) voltage B) current C)power D)None		
21. DVR consists of an energy storage device, a boost converter (dc to dc), voltage source	e[]
inverter, ac filter and coupling transformer, connected in		
A) parallel B) series C)series-parallel D)None		
22.DVR is a connected device	[]
A) shunt B) series C) combined series and shunt none D) none 23. Which of the following controller injects voltage in series with the line	[]
	L	J
A) Series B) Shunt C) Series-Shunt D)None		
24. Which of the following controller injects current in to the system	[]
A) Series B) Series-Series C) Series-Shunt D) Shunt		
25. Which of the following controller provides more effective voltage control	[]
A) Series B) Shunt C) Series-Series D)None		
26. Which of the following device used for high power applications	[]
A) GTO B) Diode C) Thyristor D)BJT		
27. Which of the following controller more effective in current/power flow	[]
A) Shunt B) Series C) Series-Series D)None		

28. Which of the foll	owing are sag i	mitigation devices			[]
A)DVR	A)DVR B)SSTS C) Active series compensators D)All of the					
29.SSCL consists of	a pair of oppos	ite poled switches i	n parallel with t	he current limiti	ng []
A) Inductor I	Lm B) Ca	pacitor Cm C)	Capacitor Cs	D)none		
30. The current limite	er is connected	with the feeder	such that it can	restrict the curr	ent in ca	ase of
fault down stream	m				[]
A) shunt	B) series	C) combined	D) none			
31.In SSCL during h	ealthy state con	dition the opposite	poled switch rea	mains—	[]
A)opened	B) closed	C) constant	D)none			
32. The SSTS is also	called as				[]
A)STS	B)TCR	C) TSR	D) none			
33.The worlds first I	OVR was instal	led in the year			[]
A)1995	B) 1990	C) 2001	D) 2005			
34.The UPQC conne	cted indi	fferent ways			[]
A) 2	B)3	C) 4	D)5			
35. Which company i	nstalled an indo	oor 15kv, 600A stat	ic transfer switc	h at industrial		
park in Colum	bus				[]
A) American	electric power	B) Edison	company			
C) texas com	npany	D)none				
36. UPQC is a combi	ination of				[]
A) SSSC,ST	ATCOM	B) TCR,T	SR			
B)TCSC,TS	SS	D) TCSC	,SSSC			
37. STATCOM genera	ates/absorbs the				[]
A)Real power	B) acive pow	eRe C) Both (A)	&(B) D)No	one		
, F · · · · · ·	_,		-,			
38. Which of the follow	wing device is m	ore preferable for FA	CTS technology		[]
A)CSC	B)VSC	C)Both(A)&(B)	D)None		
39. Which of the follo	wing device is m	ore preferable for sto	orage in FACTS to	echnology	[]
A) Capacitors	B)Inductors	C)Batter	ies D)Super	conducting magn	ets	
40. The effective transf	mission impedan	$ce X_{eff}$ with the series	s capacitive comp	ensation	[]
A) X-Xc	B) X+Xc	C)	X/Xc	D) None		

Prepared by:S.MUNISEKHAR